Journal of Fluorine Chemistry, 24 (1984) 457-465

Received: April 19, 1983; accepted: May 20, 1983

SELECTIVE FORMATION AND REACTIVITY OF A STABLE CARBOCATION FORMED FROM PERFLUORINATED N.N'-DIMETHYL IMIDAZOLIDINE

H. BÜRGER, R. KÖPLIN and G. PAWELKE

Anorganische Chemie, FB 9, Universität-Gesamthochschule D-5600 Wuppertal (F.R.G.)

SUMMARY

1,3-Bis(trifluoromethyl)-2,2,4,4,5,5-hexafluoro-imidazolidine (III) forms a stable 2-carbocation in SbF₅ solution. This cation reacts with H_2O and H_2S to yield the imidazolidine-2-one and -thione derivatives respectively. Selective halogen exchange in the 2-position is achieved by treatment of III with BCl₃ and BBr₅ to form the 2,2-dichloro and 2,2dibromo derivatives. All compounds were characterised by NMR, IR, Raman and mass spectra.

INTRODUCTION

Recently we have shown that perfluorotrimethylamine $(CF_5)_3N$ (I), upon prolonged treatment with SbF₅, reacts to form the cyclic carbocation II which is obviously stabilized by charge delocalization [1]. This cation, which is also formed by trimerization of CF_3NCF_2 in SbF₅ and elimination of CF_4 , suggests that the CF_2 group in the $>\overline{N}-CF_2-\overline{N}<$ fragment is more reactive towards Lewis acids than a terminal NCF₃ group. In order to evaluate this suggestion more thoroughly, we have synthesized another compound with this fragment, 1,3-bis(trifluoromethyl)-2,2,4,4,5,5-hexafluoro-imidazolidine (III), and studied its reactions with Lewis acids. (III) offers, in addition to the nitrogen atom, three different CF bonds which might be attacked in competitive reactions.

0022-1139/84/\$3.00

© Elsevier Sequoia/Printed in The Netherlands

Related reactions of sulfur derivatives have been reported recently [2]. While $CF_2(SF_3)_2$ reacts with AsF₅ to form the cation $SF_3CF_2SF_2^+$, the cyclic tetrafluorodithietane yields the carbocation IV when treated with SbF₅.

In the following we report on the reactions of III with Lewis acids and the characterization of the hitherto unknown compounds obtained in this study.

RESULTS AND DISCUSSION

Perfluoro-1,3-dimthylimidazolidine(III) and its reactions

III was first obtained as a by-product from the fluorination of $N(CH_3)_3$ with CoF_3 [3]. The electrochemical fluorination of 1,3-dimethylimidazolidine [4] under conditions similar to those described earlier [5] afforded substantial amounts of III, the yield being 26%. The ¹⁹F NMR spectrum of our material, Table 1, agrees with that previously reported [3], though our boiling point is 56°C (cf.46°, Ref. [3]).

Excess of III and SbF₅, at room temperature, react within minutes to form V, which builds a solid, stable salt with the Sb₂F₁₁ anion. The structure of V follows from the ¹⁹F NMR spectrum, Table 1, which proves the presence of three different F atoms in a 1:4:6 ratio. This cation readily reacts with H_2O and H_2S to form imidazolidine-2-one (VI) and 2-thione (VII) respectively.

A somewhat different reactivity of III is revealed in its reactions with BCl₃ and BBr₃ at 140 and 100°C respectively. Though no ionic intermediates can be isolated, the 2-CF₂ group is converted, by halogen exchange, to CCl₂ (VIII) and CBr₂ fragments (IX) respectively. Treatment of VIII with concentrated sulfuric acid selectively cleaves the CCl bonds and provides an independent route to VI. Alternatively treatment of III with SO₃ for 24 hours at 140° affords VI in a 30% yield. Scheme (1) displays the above-mentioned reactions.

Scheme 1

From the constitution of the reaction products and the evaluation of ¹⁹F NMR spectra recorded at different stages of the reactions, it can be concluded that SbF_5 , BCl_5 , BBr_5 and SO_5 selectively attack the NCF_2N fragment while no reactivity of the $CF_2(C)$ and $CF_5(N)$ groups was indicated under the conditions employed. It is likely that the reactions with SO_3 and boron halides also proceed via a cationic intermediate.

The Sb_2F_{11} salt of V is indefinitely stable at room temperature. The thermal decomposition of its solution in SbF, commences at 130°C, CF, being evolved slowly. At 150°, the decomposition proceeds rapidly. The ¹⁹F NMR spectrum of the residue would not contradict the formation of the ions Xa and Xb, though convincing evidence is still lacking. Efforts to isolate and characterize further volatile decomposition products of V were so far unsuccessful.

Spectroscopic characterization

The ¹⁹F and ¹³C NMR spectra of III and V to IX are set out in Table 1. The ¹⁹F spectra are of higher order, the $F_3CNCF_2CF_2NCF_3$ fragment giving rise to a $(A_3XX')_2$ spin system. The simulation of the poorly resolved ¹⁹F NMR spectrum of IX permitted only the sum ⁴J ($\underline{F}_3CNC\underline{F}C$) + ⁵J ($\underline{F}_3CNCC\underline{F}$) to be determined accurately. The coupling constants of III were obtained from decoupling experiments. The ¹⁹F NMR spectrum of V is displayed in Fig. 1.

In the $^{13}\mathrm{C}$ spectra only the 2-C atom shifts exhibit large and characteristic variations.

460

	III	V	ΓI	VII	VIII	IX
bp ₇₆₀ (°C)	56	ŧ	63	96	102	130
mp (°C)			10.5			
19F NMR ^a						
$\delta(NCF_{s})[ppm]$	-56.1 ^c	-53.6 ^d	-57.5°	-56.7 ^d	-53.6 ^e	-53.5 ^d
$\delta (NCFN) [ppm]$	-62.7	-43.7	I	1	I	ł
δ (CF ₂ C)[ppm]	- 92 . 6	-93.6	-96.1	- 94 . 8	-91.7	-92.1
$4_{J}(CF_{z} NCFN)[Hz]$	5.7	<1 ^f				
4J(E_CNCEN)[Hz]	7.9	14 . 8				
$4_{J}(\underline{F}, CNC\overline{FC}) + 5_{J}(\underline{F}, CNCC\underline{F})[Hz]$	7.2	~ 6.0	7.5	0°6	8 ° 4	8 . 5
13 C NMR ^b						
δ(NCF ₃)[ppm]	117.3 ⁸		117.3 ^h	117,8 ^h	118.8 ^h	118,3 ^h
ð (NCN)[ppm]	114.9		137.4	164 . 6	1.46	45°0
δ (<u>CC</u> N)[ppm]	112.1		112.0	113.4	112.9	111.6
$\frac{1}{J}$ J (NCF ₃) [Hz]	267.5		269.2	269.7	269 ° 0	269.0
¹ J (NCFN)[Hz]	258.3		ı	1	1	I
$\frac{1}{2}$ J (NCF ₂ C) [Hz]	267.0		270.8	271.5	268.2	269.0
$^{2}J(NCCF_{2})[Hz]$	29.6		29.3	29 ° 2	29 . 8	29 . 8
ab(19F) against (FC] hositive	sion = hiah	frammanen	(ner) Ad	arainst Th	VC nositi	te ci an

Physical properties and NMR spectra

TABLE I

 $(CF_3)_3N = -55.8$ ppm. ¹Structure unresolved, see text and figure 1. ^gExternal TMS. ^hInternal Do(''F) against UFUL3, positive sign = high frequency. "0(''C) against TMS, positive sign high frequency. ^CInternal CF3COOH = -76.55 ppm. ^dInternal CF3COOCH3 = -76.2 ppm. ^eInternal CDC1, = 76.91 ppm. Gas phase infrared and liquid phase Raman spectra have been recorded of III and VI to IX. Diagnostic frequencies and their assignment are listed in Table 2.

TABLE II

Diagnostic vibrational frequencies [cm⁻¹] and relative intensities (IR/Raman)

III	VI	VII	VIII	IX	Assignment
1035 s/wp		_	389 w/sp	242 /sp	v CX2
1320 sh/-	-	-	812 s/sh	730 s/m	ນັ _ລ ິ⊂X₂
690 m/mp	-	-	232 /m	168 /mp	రెఀ౮న₂
	1858 s/mp	1274 m/m p			v C=O(S)
774 - /sp	748 m/sp	750 w/sp	744 w/sp	745 sh/sp	δ _ς CF ₃
610 w/wp	674 - /sp	634 w/mp	614 s/mp	610 s/mp	δ CF ₂

Except for the vibrations associated with the NCX₂N fragment, X = F, Cl and Br, the spectra of III, VII and IX are similar. While in VI, v(CO) at 1858 cm⁻¹ is well isolated from all other fundamentals, the C = S stretching vibration at 1274 cm⁻¹ falls into the range of CF and skeletal stretching vibrations and, by coupling, causes major frequency and intensity changes.

The compounds III and VI to IX were examined by conventional EI mass spectrometry. The observed m/e values and the isotopic patterns confirm the constitution of the molecules. (M^+) ions were observed only for VI and VII, while III, VIII and IX fragmentate to form the (M-Halogen⁺) ion. Table 3 gives a list of the strongest peaks (lightest isotopes) in the order of decreasing intensity. TABLE 3

EI mass spectra in the order of decreasing intensity at 70 eV

	m/e
(III)	114(CF ₃ NCF ⁺); 69(CF ₃ ⁺); 164(CF ₃ CNCF ₃ ⁺);
	183(CF ₃ CFNCF ₃ ⁺); 209(CF ₃ NCF ₂ CFNCF ⁺); 133(CF ₃ NCF ₂ ⁺);
	$297(M-F^+)$.
(VI)	69(CF ₃ ⁺); 114(CF ₃ NCF ⁺); 92(CF ₂ NCO ⁺); 164(CF ₃ NCCF ₃ ⁺);
	133(CF ₃ NCF ₂ ⁺); 161(CF ₃ NCF ₂ CO ⁺); 50(CF ₂ ⁺);
	100(C ₂ F ₄ ⁺); 275(M-F ⁺); 294(M ⁺).
(VII)	69(CF ₃ ⁺); 108(CF ₃ NCS ⁺); 114(CF ₃ NCF ⁺); 100(C ₂ F ₄ ⁺);
	$164(CF_{3}NCCF_{3}^{+}); 310(M^{+}); 222(CF_{3}NCF_{2}CFNCS^{+});$
	291(M-F ⁺); 95(CF ₃ NC ⁺).
(VIII)	69(CF ₃ ⁺); 100(C ₂ F ₄ ⁺); 50(CF ₂ ⁺); 114(CF ₃ NCF ⁺);
	164(CF ₃ NCCF ₃ ⁺); 313(M-Cl ⁺); 90(CF ₂ NCN ⁺);
	$225(CF_3 NCF_2 CFNCC1^+)$.
(IX)	69(CF ₃ ⁺); 100(C ₂ F ₄ ⁺); 50(CF ₂ ⁺); 114(CF ₃ NCF ⁺);
	$164(CF_3 NCCF_3^+); 133(CF_3 NCF_2^+); 278(M-2Br^+); 357(M-Br^+).$

EXPERIMENTAL

Physical measurements were carried out as described [6]. Elemental analyses are by Mikroanalytisches Laboratorium Beller, Göttingen.

<u>1,3-Bis(trifluoromethyl)-2,2,4,4,5,5-hexafluoro-imidazoli-</u> <u>dine(III)</u> was prepared by electrochemical fluorination of 1,3-dimethyl-imidazolidine [4] according to the procedure described in Ref. [6] and purified by fractional distillation over a slit tube column, yield 26%.

<u>1.3-Bis(trifluoromethyl)-2,4,4,5,5-pentafluoro-imidazoli-</u> <u>dinium-undecafluoro-diantimonate(V)</u> a) 50 g (0.23 mol) SbF, and 15 g (0.047 mol) III are condensed in a pyrex tube and shaken for several minutes at room temperature. A solution of V is obtained in quantitative yield. b) llg (0.051 mol) SbF, and 32 g (0.1 mol) III are heated in a pyrex tube to 80°C for several days. Then excess III is removed <u>in vacuo</u> whereby V is obtained quantitatively as a white powder. <u>1,3-Bis(trifluoromethyl)-4,4,5,5-tetrafluoro-imidazolidine-2-one(VI)</u> a) To a solution of 0.047 mol V in SbF, were added $5 g (0.28 \text{ mol}) H_2 0$, the vigorous reaction being controlled by cooling. Volatile reaction products were condensed on $P_4 O_{10}$ and purified by fractional condensation in vacuo, yield 75%. b) 3g VIII and 20 ml concentrated $H_2 SO_4$ were shaken at room temperature for 2 hours; after work-up yield 70%. c) Stoichio-metric quantities of III and SO₃ in a sealed 4 mm pyrex tube were heated to 140° C for 1 day. Volatile products were condensed on oleum, $30\% SO_3$, and separated by fractional condensation, yield 30%. C₅F₁₀N₂O, mw 294.05. Required / found; %C, 20.40/20.62; %F, 64.61/64.40; %N, 9.59/9.44.

<u>1,3-Bis(trifluoromethyl)-4,4,5,5-tetrafluoro-imidazolidine-2-thione(VII)</u> 70 g (2.05 mol) H_2S was condensed on a solution of V prepared from 50 g (0.23 mol) SbF₅ and 17 g (0.05 mol) III in a Hoke 150 ml stainless steel cylinder, and shaken at room temperature for several minutes. The volatile products were purified by fractional condensation, yield 30%. C₅F₁₀N₂S, mw 310.12. Required / found; %C, 19.35/19.72; %F, 61.26/60,6; %S, 10.34/10.79.

1,3-Bis(trifluoromethyl)-2,2-dichloro-4,4,5,5-tetrafluoroimidazolidine(VIII) 18 g (0.051 mol) III and 9 g (0.077 mol) BCl₃ were reacted in a stainless steel cylinder for 4 days at 170°C. Volatile products were purified by fractional condensation in vacuo, yield 92%.

C₅Cl₂F₁₀N₂, mw 348.96. Required / found; %C, 17.19/17.36; %C1, 20.32/20.48; %F, 54.44/54.1; %N, 8.03/8.18.

<u>l,3-Bis(trifluoromethyl)-2,2-dibromo-4,4,5,5-tetrafluoro-imidazolidine(IX)</u> was prepared analogous to VIII from III and BBr₃, 4 days at 100°C, yield 40%. C₅Br₂F₁₀N₂, mw 437.87. Required / found; %C, 13.70 / 13.78; %Br, 36.50/36.28; %F, 43.39/43.0; %N, 6.40/6.26.

464

We wish to thank the Bayer AG and the Fonds der Chemie for support.

REFERENCES

- 1 H. Bürger, R. Köplin, G. Pawelke and C. Krüger, J.Fluorine Chem., 22 (1983) 175.
- 2 A Waterfeld and R. Mews, J. Fluorine Chem., 21 (1982) 5.
- 3 R.W. Rendell and B. Wright, Tetrahedron, 35 (1979) 2405.
- 4 C.H. Yoder and J.J. Zuckerman, J. Amer. Chem. Soc., <u>88</u> (1966) 4831.
- 5 H. Bürger, H. Niepel and G. Pawelke, J. Fluorine Chem., 15 (1980) 231.
- 6 H. Bürger, R. Eujen, H. Niepel and G. Pawelke, J.Fluorine Chem., 17 (1981) 65.